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Foreward

This report is Chapter VIII of the twelve in a forthcoming research
' monograph on the mathematical theory of laminar combustion. Chapters I-IV
originally appeared as Technical Reports Nos. 7T, 80, 82 & 85; these were

later extensively revised and then issued as Technical Summary Reports |

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center,

hhiversity of Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter VITI

Three-Dimensional Flames

! 1. The Flame as a Hydrodynamic Discontinuity.

The plane premixed flame discussed in Chapters II & III is an idealization
seldom approximated, since in practice the flame is usually curved. A bunsen
flame is quite unavoidably so, but even under circumstances carefully chosen
to nurture a plane state, instabilities can lead to a three-dimensional structure.
3 Such flames have been extensively studied (Markstein 1964, p. T) using whai may
be called a hydrodynamical approach, a brief description of which will provide

 an appropriate introduction to our subject.

1 . On a scale that is large compared to its nominal thickness A/cPM, the
- flame is simply a sheet across which there is a Jump in temperature and density -
3 f subject to Charles' Law, as is appropriate for an isobaric process. Teformatic:

of the sheet from a plane is associated with pressure variations, of the order
of the square of the Mach numbers (cf. Sec. I.S5), in the hydrodynamic fields.
These small pressures jump across the sheet in order to conserve normal momeniic:

flux. Because Euler's equation for small Mach number hold outside the flame

(ef. end of Sec. 3), the temperature and density do not change along particle
paths; so that for a flame travelling into a uniform gas the temperature and

density shead are constant and the flow is irrotational. The flow behind is

stratificd, however, since flame curvature generates both vortieiy and non-
‘ uniform temperature jumps. Nevertheless variations in tcmperature from the
adiabatic flame temperature are usually neglected everywhere, a matter to

which we shall return later. On the other hand, vorticity generation cannot
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be ignored so that, although Euler's equations hold behind the flame, the
flow is not potential there.

The flow fields on the two sides of the flame are coupled by conservation
of mass and momentum fluxes through the sheet. Indeed, if V is the speed of

the discontinuity back along its normal n (Fig. 1) we have
= = 2 _ 2
(1,2,3)  pylvyy + V)= o (v + W)y ¥y =¥y by + 0y (v + V)7 =py + p,(v, 547)

where Vo = yen and ?L =y - vnn. The flame speed is defined to be the
normal gas speed immediately ahead, as measured in a local frame fixed at the
discontinuity, i.e. vyt V. If this is specified the hydrodynamic problem

can in principle be solved and the locus of the flame determined. [Equations

(1), (2), (3) become four scalar equations for v once is known,

and that follows from the flame temperature T2.
Evaluation of the flame speed from a combustion analysis of the sheet
has often been sidestepped, and replaced by one of several hypotheses. The
simplest is that the speed is constant. In this way Landau (1944) considered
infinitesimal disturbances of a plane flame and concluded it is always unstable,
a result that will be examined in Ch. XI.
The already nonlinear flow field is only complicated by the combustion,
even for a constant-speed flame. Accordingly an additional éimplication,
often adopted, is that the flow is not affected by the flame. This can be
Justified only when the heat released by the combustion is small compared
to the thermal energy of the fresh mixture (Sec. I.5), so that the temperature

Jump across the sheet' is negligible. Such is not a common characteristic of

actual flames, but the aporoach can provide insight into their qualitative

nature.
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Consider, for example, a stationary flame located in the shear flow of

Fig. 2, representative of that from a bunsen tube. Since v, is equal to the

flame speed, assumed constant, the angle o decreases as u increases and

there is a cusp on the centerline. The resulting flame shape has some resemblance
to that of the inner cone of a bunsen flame. (Even for a parabolic velocity
distribution, a good approximation to the flow from the tube when that is unaffected
by the combustion, the shape of the flame can only be obtained numerically.)

In practice the tip is usually rounded so that the flame speed at the
centerline is equal to Vhax and must have a smaller value elsewhere. (A
detailed study of flame tips is presented in Ch. IX.) Observations of this
nature and dissatisfaction with the stability prediction of Landau have
encouraged more sophisticated hypotheses, in particular that of Markstein
discussed &t the end of Sec. III.6. We shall not pursue these here since
rational analysis of the burning zone (which is embedded within the hydro-

dynamic discintinuity) determines the actual flame speed from first principles.

2. Slow Variation and Near Equidiffusion.

As discussed in See. II.7, the combustion of a two-component mixture that
is well removed from stoichiometry can be characterized by a single mass
fraction Y related to the component which is consumed at the sheet. To be
sure, the argument was given for plane flames, equal molécular masses, and
unit Lewis numbers and stoichiometric coefficients; but all these restrictions
are readily seen to be inessential (as also is the number of components). The

single Lewis number is then properly interpreted as that of the deficient

¢omponent - oxidant in a rich flame, fuel for a lean one.

VRIUTOUN S PU W
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Appropriate equations for our discussion of three-dimensional unsteady

motion are therefore

(4,5) pT = 1, 3p/3t +9 -(pv) = 0,

6 o(at/3t + v7 1) 271y = —q,
AT play/at + vowy) = -wp +53[vez +y(v-v)/3],
(8) o(aT/at + ¥+ ¥I) -v°T = @

where

(9) o= ave 7,

These have been rendered dimensionless as in Sec. I.6 and the undisturbed

pressure has been taken constant (i.e. P, = 1), with p the variations from it.
On the length scale x/cPM now being used the flame is no longer a

sheet but, for large activation energy, the reaction zone within it can be

considered so. We now take the x-axis instantaneously parallel to the normal

to this sheet (and therefore to the hydrodynamic discontinuity) at the point

of interest and introduce the new variable
(10) ns=sXxX - X*(t)’

as was done in the discussion of plane deflagration waves in See. III.3. As
usual x, denotes the position of the sheet. Everywhere in the above

equations 3/9t and 3/3%x should row be replaced by

(11) 3/3t - %,3/3n and 3/dm,

respectively.
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In analysing the resulting equations for the limit 6+« some thought

must be given to the flame temperature, i.e. the temperature immediately

behind the sheet. It is clear from the results of Chs. II & IIT (ef. See. III.1)

that there must be a general correlation between this temperature and the
flame speed in the sense that 0(1/6) changes in the former are associated
with 0(1) changes in the latter. We may therefore expect that if the flame
temperature varies by larger amounts, either temporally or spatially, then
the flame will vary in an extreme fashion through large acceleration or
curvature; and such behavior will introduce serious difficulties into the
analysis. Only in the discussion of explosions in Ch. XII will these -
difficulties be confronted, and then only in relatively simple circumstances.
Here, as in Ch. III, we shall restrict ourselves to physical situations where
the temperature of the burnt mixture in the neighborhood of the flame is
everywhere, and at all times, within 0(1/8) of the adiabatic flame
temperature. Necessary restrictions are established by the following argument
(Buckmaster 1979a).

As in Sec. III.3, we can calculate the flame temperature from the overzall
change in partial enthalpy H =Y + T in the flame up to and including
the reaction zone. Thus equations (6) and (8), with the modifications (11),
are added to eliminate the reaction terms and then integrated from n = -

to O+ to obtain

O+

-=00

. 2 =
g+ v, - gk ¢ gt o s g+ O 4 1),

(12) an on 0+

where as before the subscript | denotes the component perpendicular to n,
i.e. in the flame sheet, and we have used the fact that Y vanishes behind

the sheet. The middle term on the left-hand side can be integrated by parts

to yield

et b e sk e
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o+ O+ )
pH(v - x,)| =! H -5% [p(vn - x,)ldn,

-0 -0

in which
é%[p(vn - i*)] = - %%' .L.(pil?’ p(vn - i*)|0+ = pl(v n, x*) f [-—-+Yl-(pv Ylén

according to the equation of continuity (5). Equation (12) may therefore be
rewritten

v -3 - 3T | g0+ 2ep-l Ko}
(13) pl(rnl k) (T ~ H)) an|0+-- o [Ny + 1)+ (52 +

a(pH) -y, {pHv,)] dn

*upey) - gglem -7y clety)

vhere, as usual, T, denotes the temperatu;e at the flame sheet.

By assumption the left-hand side of equation (13) is at most 0(1/8)
so that the right side must be similarly bounded. The only way toc guarantee
this within a general framework is to make the terms in Yif i end 3/3t
separately small, which has been accomplished in two ways. We confine
attention to disturbances which vary over times and distances of order 8 .
Such slowly varying flames are a generalization of those introduced in

Sec. III.5. Alternstively, we restrict the Lewis number to values close to’

one, i.e. vwrite
(14) L7l <12/8 witha = o(1),
insist that the state 1 does not vary along the fleme and impose the integral

(15) H=H + o(1/8)

which is then a possibility. Such near-equidiffusional flames are a generalizaticn

of those introduced in Sec. III.S.




The full generality of the above analysis has not appeared elsewvhere

although its essence, for shear flows, is contained in Buckmaster (197%a).
The rest of the chapter is concerned with the detailed formulation of each

of these two kinds of flame.

3. The Basic Egquation of Slowly Verying Flames.

Slowly varying flames can be characterized by ithe scaling

(16) (y,Z,t) = e(n, CsT)a

but it should be recognized from the outset that the actual lengths involved
are quite moderate. In Sec. II.ht we saw that the preheat zone typically ﬁas
a thickness of less than 0.1 mm. So that, even for 6 as large as 100,
appreciable changes occur in less than 1 cm.

| Flame-sheet disturbances on the 8-scale will be associated with field
disturbances at distances n = 0{¢), where the ‘governing equations are
fundamentally different from those where n = 0(1). The limit 6 »
therefore generates a structure with at least three zones: the flame sheet
described on the scale n = 0(1/6), to which all the reaction is confined;

a diffusion zone described on a scale n = 0(1l), called a preheat zcne in
front of the flame; and an ideal-fluid region described on the scale n = 0(9),
Description of the latter is the hydrodynamic problem discussed in Sec. 1.
The stratification behind the flame which is an essential feature of this
description must eventually be smoothed out by diffusion, so that additional

structure is described in a scale much larger than n = 0(6); but that will

not be considered.
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#’ Anticipation of the matching conditions imposed by the ideal-fluid

region enables the diffusion 2one to be analyzed. These conditions are

(17) n & 4o (p!TQY)Y,p) -+ (pl’Tl’Yl’Yl!pl);

.

i (18) n -+ -»:  exponential growth not permitted.

Caiiae oot Aeind

The state 1 is that immediately ahead of the hydrodynamic discontinuity, and

is to be considered a-known funetion of n,Z,7r. Our aim is the same as that

in Sec. III.5, namely to calculate various quantities in the overall enthalpy

balance (13) and hence derive an expression, in terms of the statell, for the

; perturbation of the flame temperature. (The change of units introduced in ?
i

Sec. III.3 is not appropriate here since Py> which replaces o - there,

is in general variable; hence the differences in someof the subsequent formulas.)

! To leading order the governing equations become
(19, 20) oT =1, a[p(v + vn)]/an =0,
(21) p(V + Vn)BY/Bn -1:‘132Y/3n2 = -Q ,
]
(22, 23) p(V+ v )av_ /3n = -3p/on + (hf/3)32v /an2 p{V+v_Jav /on =?32v /8n2
? n " n n ’ n’ o~ 0
2 2
(24) o(V + vn)aT/an -3 T/an" = Q

where -i* has now been identified with V, the speed of the hydrodynamic
discontinuity. Apart from notation, equations (19), (20), (21) and (2L)
are identical to those for a plane flame so that we may immediately write

{cf. See. IIL.S)

(25) oV +v ) =0 (Vev ) =i (say),

R e A A A e s i ada i il i iaaiin. oS R AR
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IMn M n Mn -1

n

(26) Y

Y, (1~ e ), T=T

1

-1 -
(27) Y=0,T=H +8 t(ngt),=H" for n>o.

The mass flux Mn may also be called the burning rate. Expressions for Yn
and p cean also be written, but we shall not need them. On the other hand, v

is now needed; since it does not Jump across the hydrodynamic discontinuity, it

can be expected to stay constant over the whole range of n:

(28) .%L = %l;.

Formal proof comes from equation (23), which holds even in the flame sheef
and posscsses only constant vectors as bounded solutions.

The perturbation t°° in the flame temperature may now b= calculated
from the enthalpy balance (13) since all other quantities have been
determined, in terms of V, to sufficient accukacy. The result is quite
complicated, involving terms in 38/8t and ?l'of pl,Tl,Yl and Yl'
Considerable simpliciation occurs when the upstream temperature and composition
of the mixture (on the hydrodynsmic scale) are uniform, since then Py Tl
and Yl are constant, as we shall see at the end of this section. Only

the simpler result will be written here.

The 0(9—1) terms in the integrand (13) are now

sele(Te - 1+ vloy, (7, - )]

iN%n Mhn
. - Y](e -e )
= {[M +v. "V M)ty v } =
n ~]12 ]l n Mn an 1] Mnn ’
T1 + Yle

vhich may be replaced by

recny PRSP
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Tl + Yle

under integration by parts. Here the dot denotes differentiation with respect
to t and zL is the gradient operator with respect to n,Z . For XLI =0
the calculation is the same as for a plane flame, so that it is not surprising

to find the generalization

. B |
= WM . - . = -2
(29) ¢ oM M + Y, YN, - MY ‘~’.L1] vhere b =Y, [ T do

of the result (III.39) from the integration (13). (A factor T, is now '
missing from b Dbecause of the different unit for Py in Mh and the use
of 1/6 as expansion parameter.)

| Another relaticn between the burning rate Mh and the perturbation t.
of the flame temperature follows from the structure of the flame sheet,

which is described on the scale n = 0(1/6). The analysis is the same as in
Ch. 3 since, to leading order, the equations for p, Y and T are those for

a plane flame. VWe conclude that

tw/212
e with T, = E

(30) M 1

ef. equation (III.26), if the mass flux M on which units have been based
is chosen to be the burning rate of a plane flame moving into the state

Y., T, i.e.

1’7

(31) M= /EXD T; exp(-0/2T,}/1,0,

cf. equation (III.16). The two results (29), (30) now give us the basic

equation
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(32) ‘D[Mn + Y)Y M- MnYJ. 'Y_Ll] + 2T*M2 n M =0

of slowly varying flames, which should be compared with its plane from (III.LC).
The equation is due to Buckmaster (1977), whose derivation has been simplified.

Restricted forms of it have been given by Sivashinsky(197%, 1975) and, in a

linearized context, by Eckhaus (1961). Interpretation involves the concept

of flame stretch to be introduced in the next section. We shall finish the
present section with a brief discussion of the ideal-fluid region where n = 0[&}.

- To the slow variables n,;,T we now add

: ’ (33) £ = x/6.

Then p(= 1/T), T and Y are found to be constant on particle lines, to

leading order, while the velocity and pressure fields satisfy

(3k) v-y=0, ploy/ot + v *¥v) = - ¥p, !

.

where ¥ is now the gradient operator with respect to ¢g,n,z. These are
Euler's equations for an incompressible (but not necessarily constant-density)
ideal fluid, i.e. one devoid of viscosity and heat conduction. Particles
retain the values pl,Tl and Yl they acquire far upstream until they

reach the hydrodynamic discontinuity, where they exchange them for the values

(35)

which they then carry downstreem. The ideal-fluid region is coupled to the }
‘ flame through the velocity and pressure,in a manner that will now be seen in

detail for uniform temperature and composition upstream.




}" =12~

ps T and Y are all constant on either side of the hydrodynamie
discontinuity. In particular there is no thermal stratification on the dowmn-

stream side, in accordance with a common assumption mentioned in Sec. 1. The

problem is to find v and p subject to the jump conditions (1), (2), (3)
and the evolution equation (32), which may be thought of as five equations
| for Vo5 Po and V in terms of the state 1. Clearly its complete analysis

would be formidable.

4. Flame Stretch.

In view of the difficulties in giving a complete analysis of a'three-
dimensional flame (even when it is slowly varying), it is natural to try to
identify special characteristics that play particularly important roles in
the understanding of flame behavior. Flame speed and temperature are
elementary examples of such characteristics that have already been identified.
A more subtle characteristic, attributed to Karlovitz (1953), is flame stretch.

In order to define.this in an unambiguous fashion it is first necessary
to define a flame surface, i.e. a sheet that characterizes.the location of the

reaction. For large activation energy the reaction zone is such a. surface

- when viewed on the scale of the preheat zone. Lewis & von Elbe (1961, p. 225)

use the locus of inflection points of the temperature field near the burning

zone, a definition that coincides with the preceding one in the limit ¢ + » .
If the flame can be viewed as a hydrodynamic discontinuity, as in Sec. 1, thren
‘ the discontinuity itself is a fleme surface. In all these examples z2nd any
other for which the present discussion is meaningful, a flow velocity is

defined on each side of the surface such that v is continuous across the

pa

surfece.
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Consider a point on the flame surface which moves in it with the velocity
?L: A set of such points forming an infinitesimal surface element of erea
S will, in general, deform during the motion, so that S will vary with time.
If S increases the flame is said to be stretched, whereas if S decreases
the flame experiences negative stretch and is said to be compressed. A precise

measure of the stretch is the Karlovitz number

(36) K

-
&[G

Certain configurations for which stretch is an important charscteristic will

be discussed in detail in Ch. X. Here we small give two elementary exanples.
Consider a stationary flame surface which, for simpliecity, is loecally plane,

inclined at an angle o to the horizontal (Fig. 3). If the flame is located in

a horizontal chear flow U(y), then
(37) = == = sing cosa U'(y).

Note that if a = 0 or. /2 +there is no stretch because then the tangential
velocity does not change along the surface. The second example is an expandinz

spherical flame. If the radius is R(t), then
145 _2:
(38) SRR

Stretch of this type is discussed under somewhat more general circumstances
in conncction with the quasi-plane flames of Sec. ITI1.8.

In these tirs examples the streteh could be determined by inspection,
tut we ncv need a general expression for it. That comes from connecting it

with streteh in a plane. Thus, ac an element of the flame surface passes

through a designated point it expericnces the same stretch as its projection
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on the tangent plane at that point, which is moving with velccity Y. The

plane element, however, has stretch

(59 1.y ),

as is easily seen from the divergence theorem, so that this formula holds
also for the surface element.
In the first example above the flame surface is its own tangent plane at

every point and we have
2 .
¥1_= (U cos"a, U sina cos a, 0),
from which the result (37) follows. In the second example
¥ = (o, Ry/R, Rz/R),

if the x-axis is taken along the normal at the point considered, and the
result (38) follows.

Stretch is a kinematical concept. For a slowly varying flame with unifornm

-

temperature upstream it may be related to the flame speed. The burning rate I

is then essentially the flame speed v

ol + V, differing from it only by a

constant factor The basic equation (32), which now reads

Py
an
1as_ 5 M o102
(ko) s L= R e mom,

n
therefore expresses the stretch in terms of the flame speed. Note that stretch
is the same for the hydrodyramic discontinuity as for the reaction zone, but
flame speed relates to the former and not the latter.

Fleme thickness is another concept that can usefully characterize a flame.

Although a plane deflagration wave is not confined to a zone of finite thickness,
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to say that it has a thickness A/cpM obviously has meaning. The implication
is that while an infinite distance is required for the temperature to rise
from the cold wvalue to the hot, most of the change takes place over a small
multiple of A/cpM.

For a general flame, it is natural to define the local thickness &as
X/CPN%, where N% is the normal mass flux. Indeed, for the slowly varying
flame the dimensionless Mn is the decay coefficient for T in the preheat

zone, as the second of formulas (26) shows, so that

(k1) g =Mt

is properly called the non-dimensicnal thickness. If now the elemental volume
(42) A =28

generated by S is introduced, the basic equation becomes

| 1ap _ ,2-12
(l'3) A dr - 2']:*1) hn!ln I-xn,

expressing what may be called voluminal stretch in terms of flame speed or

thickness. The results (40) and (43) were originally derivcd by Buckuaster (10700,

Note that the sign of b depends on the Lewis numter . , being positive
for < ) and negative for 7> 1. When7= 1 + 0(1/6) so that b = 0(1/e),
equation (43) suggests that changes occur on the scale of t rather then t ,
althouglh it then fails to provide & valid description. 1In Sec. & we shalld

develop the theory of near-equidiffusional flames, and £ill the void.

We shall end the section with a few remarks ebout the contemparary

significance of flame stretch. Although the concept leads to an elegant
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description of slowly varying flames (especially when extended to voluminal
stretch, about which the literature is silent), the importance attached to it
derives from its far-ranging use as an intuitive tool in the prediction and
explanation of flame behavior (Lewis & von Elbe, 1961). This is not the
appropriate place to discuss the arguments used, which are in fact no more

than speculation. We just mention here the fundamental claim (sometimes modified
in an inconsistent fashion to fit the facts) that stretching a flame causes it
to decelerate. The mathematical evidence for such a simple picture is mixed.
Certainly the present results for slowly varying flames are not favorable:
equation {32) shows that deceleration is associated with negative stretch. But
there is supportive evidence from near-equidiffusicnal flames in certain special

circumstances. These will be discussed in Ch. X.

5. Hear-Taquidiffusional flames.

The nonuniformity as . » 1 revesled by equatiocn (32) makes it clear that
a different formulatién, distinct from that for slowly varying flames, is
needed when heat and reactant diffuse at comparable rates. The essential
characteristics of such a formulation have been identified in Sec. 2, in
particular equations (14) and (15); we shall now present a detailed matheratical

treatment. The starting point is the system of equations (3-9) with

(bb) A= (Yi62/2Tl;) exp(8/Ty) with T, = H,

corresuonding to the choice (31), with Y= 1, for M. Recall that the state
1 does act vary along the flame.

We seck en asymptotic development in which spatizl and temporal variations

in the flarme-sheet location are 0(1). As discussed in Sec. 2, limitation of

e
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the allowable variation in flame temperature then imposes the restriction

(14) and leads to the integral (15), which we now write
(45) H=m, + 067 h + 0(6™)

outside the reaction zone. Equations (6), (8) may then be written

2 2 2

T,p(%+v-y)h=\7h+wi

~

(W6,47)  p(F + ¥y DT = ¥

there, where o, T, v now stand for the leading terms in their own exparsions
for ® large. The same convention (including p) in the remaining equations
(4), (5), (7) completes the system. The relevant solution of equation (L6)

behind the reaction zone is
(48) T =T,

Note that the equations are essentially multi-dimensional. Non-planar ericct

are no longer removed to distances 0(e), where diffusions is negligible; and

the problem is correspondingly more difficult. Notealso that the actuz2l disturz::

over which changes take place are very small, being measured on the scale o -
preheat zone (typically less than 0.1 mm.).

To complete the formulation we need Jump conditions across the reaction
zone. While some of these could be deduced from Sec. IT.U, the generalizatic-
in notation here makes it more convenient to obtain all of them ab initio.

Introduce the coordinate (10) at the point of interest and set

(49) n= o te.

The temperature within the flame zone is now written
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(50) T =T, + 67t (6,y,2,8) + 0(670)
so that .
(51) o = Ty 1 -6 TMyte, + 067,

likewise we set

.(52) Y= e'lyl(s,v,z,t) + 0(672),

(53) ¥ = 1,(y,2,8) + 670 (5,y,2,8) + 0(670),
and

(5h) p = py(E,7,2,8) + 0(670).

As the arguments of the various functions imply, the temperature, density,
mass fraction and velocity are continuous to leading order across the flame
sheet but the pressure jumps. The goal of the reaction-zone analy:zis is

to find explicit expressions for this jump and those in the normal derivatives
of the cther variables.

The variables ¥y and tl satisfy

. 2 2 2 2 2, I 2
(55) 3y, /38" = =37t /a8 = (Y] /21 )y explt, /Ty)

so that, in particular, Yy + tl is a linear function of & which matching

shows to be in fact independent of £ (to leading order 3H/3n is zero).

Hence h is continuous across the flame sheet and we may write
(56) Yl + tl = h*(yQZQt)‘

In the usual way, integration of the equation for t;,now yields an

expression for the temperature gradient immecdiately al: 0 o the reaction
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zone (coming from atl/ag as £ + -»), which may be written

(57) [%%] = -1, exp(h*/ZTi).

[ ] denotes the jump, i.e. the difference between conditions on the hot
and cold sides of the flame sheet.

We turn now to the continuity and momentum equations, and immediately note
that to leading order the former confirms the continuity of v, across the
flame sheet while the latter confirms that of ¥j. To next order the

continuity equation yields

i (V+ v, ot . 1, o) o
Ti 9~ Ty 0F MR
so that
av. Vv,
n, _ n* . AT
(58) [ an] = T* [Bn

Similarly, the normal cemronent of the romentum eguation yields

2
By 45 3 Vo

0=« ==+ == —

3¢ 3 BEE
so that
_Lp v,
(59) [P] = 3[35*.

Finally, the other components of the momentum equation yield

2
d Y,

—-...—:0

352

oV

[ 5]

an
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The Jump conditions are completed by noting that

-1, 2 -12
p(s%‘+\[-y)H=(l-)\e LYe°n + ae " ver

is an exact equation everywhere,so that

3hy _ .o
(61) [a_n] = -l an]'

In particular, we see that when the Lewis number is exactly one (A = 0) the
function h will vanish identically in the absence of inhomogenecus initisl
or boundary data.

For slowly varying flames it does not matter, so far as stretch is

concerned, whether the flame surface is taken to be the hydrodynamic disconti: -~

or the reaction zone since gl_ does not change across the preheat zone. OOn
the other hand, flame speed differs for these two possibilities since v

does change across the preheat zone. For near-equidiffusional flemes the
stretch is different also, because of changes in ¥i_‘ ‘Nevertheless, it is
natural to select the flame sheet rather than the hydrodynamic discortinuity,
which is consistent with slowly varying flarmes for stretch but not for speed.
The determinations of speed would be consistent if calculated relative to the

burnt gas, but that would flout long-established convention.

6. Reduction to Stefan Problems.

The problen described in Sec. 5, for the first time in full gencrality,
presents formidable mathematical difficulties. In general a numerical
treatment would be needed, invelving the simultaneous sclution of six first- or
second-order partial differential equations (some nonlinear) on each side of =

(possibly) moving discontinuity which has to be found. Even the description
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small perturbations of a plane flame (Sec. III1.8) derands the solution of
ations with complicated variable coefficients.

These difficulties are significartly reduced when the fluid mechanics
eliminated, in the spirit of Fig. 2 (Buckmaster 1979a, b). Then only
ations (46), (UT) remzin with p and ¥y prescribed, the first as e
stant and the second as a solution of the continuity and momentum eguatiorns.

5 is the constant-density approximation of Sec. I.5, leading toc the system

(62, 63) (Z+ v Dr=v%, (E+y.Dn= v2h +AvoT
when the density is absorbed by the distance and time units. The accompanying
Jurmy conditions are
oh aT 2
(6L) [5;] = ~X[55] = leexp(h*/QT*),

and T belng continuous across the flawe sheet, An attractive ferlure is

that the field equations are now linear; but we are still faced with a spatiallx

ell

(65

cir

tho

iptic free-boundary problem, even for the simple case of a wnifoiri: flow

) y = (U,0,0) with U = const.
For simplicity, ccnsider steady plane flow. If U is large, i.e. the
> speed ic rmch greater than the flame speed, then a flame sheet would

. . . ~1 .
e to ve rlrost horizontal (with slope of order U ~); under the rircht
cunstancszn, chang2s in the x-direction would then be nuck smaller thran
2 in *he y-lirection. An example, discussed in detail in Ch., IV, ic thot

of a Ilare nesi to an adisbatic wall parallecl to ihe x-axis. Under such

cir

(66

cumstances the field equations become parabolic; for, by writing

) x = Uy

e o _— oo e sk et
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in equations ( ), we obtain
2 2 2
(67, 68) -2 8-
oy 9x 3y

in the limit U -» w=, Moreover, the normal n is almost vertical so that the
n-derivatives in the jump conditions (64) may be replaced by y-derivatives.
The result is a generslized Stefan problem, readily amenable to numerical
analysis (Buckmaster 197%9a). Clearly the argument is not affected in substance
if U is a function of y; the y-derivatives in equations (67), (68) acquire
coefficients depending on y, the same for cach. They will form the basis of
the discussion of shear flows presented in Ch. X.

A similar reduction is possible for straining flows, i.e. flows in which
the speed varies significantly along streszmlines (Bucknaster 1979b). When the
speed is large, the angle between the flame sheet and intersectingstreamline

is small. Then changes along the streamlines occur over a charactericsti

(93

length in the flow ficld, whercas changes rnormal to then ocecur over & flzue
thickness in the neighborhcod of the sheet. 1f the ratio of thege lengihs
is large, a parabolic description results.

To see this in detail, consider a curvilinear system of coordirates (5,n)

in which ¢ measures distance alcong one of the intersecting streamlines and n

distance from it. The @ivergencelcss) velocity field is supposed to have the form

(69) v = Uglo,v) witho = s/U, v = n/U,

so that U characterizes both the magnitude of v zand the distance over which
it varies. Letting U » o gives a distinguished limit in vhieh vy is 0f1).

The combustion field is deceribed in terms of the veriables ¢ and n

so that, in the linit

Sy S




vo=Uq,, v = -nq6 with q = qs(o,o)

S n

is the velocity field experienced by the flame. Equations (46),(L7) therefore

simplify to
- 2
‘ 2 ¢ Ayp = 3T
2 on
' 2 2
{
9 ' Q) < 00 T
(71) (435 -2 Qo2 =~ —5 -
an on

These are the basis of the discussion of straining flows in Ch. X. The

previous equaticns (€7), (68) are, of course, obtained on setting q, = 1,.

i aat foaba ars el

=YX n=Yy.
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